Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 269: 115811, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086265

RESUMO

Our previous study reveals that maternal exposure to 4-vinylcyclohexene diepoxide (VCD) during pregnancy causes insufficient ovarian follicle reserve and decreased fertility in offspring. The present study aims to further explore the reasons for the significant decline of fecundity in mice caused by VCD, and to clarify the changes of gut microbiota and microbial metabolites in F1 mice. The ovarian metabolomics, gut microbiota and microbial metabolites were analyzed. The results of ovarian metabolomics analysis showed that maternal VCD exposure during pregnancy significantly reduced the concentration of carnitine in the ovaries of F1 mice, while supplementation with carnitine (isovalerylcarnitine and valerylcarnitine) significantly increased the number of ovulation. The results of 16 S rDNA-seq and microbial metabolites analysis showed that maternal VCD exposure during pregnancy caused disordered gut microbiota, increased abundance of Parabacteroides and Flexispira bacteria that are involved in secondary bile acid synthesis. The concentrations of NorDCA, LCA-3S, DCA and other secondary bile acids increased significantly. Our results indicate that maternal exposure to VCD during pregnancy leads to disorder in gut microbiota and bile acid metabolism in F1 mice, accompanying with decreased ovarian function, providing further evidence that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on offspring.


Assuntos
Microbioma Gastrointestinal , Compostos de Vinila , Gravidez , Feminino , Humanos , Camundongos , Animais , Exposição Materna/efeitos adversos , Cicloexenos/toxicidade , Ácidos e Sais Biliares , Carnitina
2.
Clin Transl Med ; 13(10): e1236, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37846137

RESUMO

OBJECTIVE: To reveal whether gut microbiota and their metabolites are correlated with oocyte quality decline caused by circadian rhythm disruption, and to search possible approaches for improving oocyte quality. DESIGN: A mouse model exposed to continuous light was established. The oocyte quality, embryonic development, microbial metabolites and gut microbiota were analyzed. Intragastric administration of microbial metabolites was conducted to confirm the relationship between gut microbiota and oocyte quality and embryonic development. RESULTS: Firstly, we found that oocyte quality and embryonic development decreased in mice exposed to continuous light. Through metabolomics profiling and 16S rDNA-seq, we found that the intestinal absorption capacity of vitamin D was decreased due to significant decrease of bile acids such as lithocholic acid (LCA), which was significantly associated with increased abundance of Turicibacter. Subsequently, the concentrations of anti-Mullerian hormone (AMH) hormone in blood and melatonin in follicular fluid were reduced, which is the main reason for the decline of oocyte quality and early embryonic development, and this was rescued by injection of vitamin D3 (VD3). Secondly, melatonin rescued oocyte quality and embryonic development by increasing the concentration of lithocholic acid and reducing the concentration of oxidative stress metabolites in the intestine. Thirdly, we found six metabolites that could rescue oocyte quality and early embryonic development, among which LCA of 30 mg/kg and NorDCA of 15 mg/kg had the best rescue effect. CONCLUSION: These findings confirm the link between ovarian function and gut microbiota regulation by microbial metabolites and have potential value for improving ovary function.


Assuntos
Microbioma Gastrointestinal , Melatonina , Gravidez , Feminino , Camundongos , Animais , Vitamina D , Ácidos e Sais Biliares , Melatonina/metabolismo , Oócitos/metabolismo , Desenvolvimento Embrionário , Ácido Litocólico/farmacologia , Ácido Litocólico/metabolismo
3.
Exp Cell Res ; 427(2): 113605, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080417

RESUMO

As a member of Ubiquitin-specific protease subfamily, ubiquitin specific protease 7 (USP7) has been reported to participate in a variety of cellular processes, including cell cycle, apoptosis, DNA damage response, and epigenetic modification. However, its function in preimplantation embryos is still obscure. To investigate the functions of USP7 during preimplantation embryo development, we used siRNA to degrade endogenous USP7 messenger RNA. We found that USP7 knockdown significantly decreased the development rate of mouse early embryos. Moreover, depletion of USP7 induced the accumulation of the DNA lesions and apoptotic blastomeres in early embryos. In addition, USP7 knockdown caused an abnormal H3K27me3 modification in 2-cell embryos. Overall, our results indicate that USP7 maintains genome stability perhaps via regulating H3K27me3 and DNA damage, consequently controlling the embryo quality.


Assuntos
Histonas , Ubiquitina Tiolesterase , Animais , Camundongos , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Histonas/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Dano ao DNA/genética , Proteases Específicas de Ubiquitina/genética
4.
Sci Total Environ ; 859(Pt 2): 160431, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36423845

RESUMO

4-vinylcyclohexene diepoxide (VCD), widely used in industry, is a hazardous compound that can cause premature ovarian failure, but whether maternal VCD exposure affects the health and reproduction of offspring is unknown. Here we focused on the effects of VCD on fertility and physical health of F1 and F2 offspring in mice. The pregnant mice were injected intraperitoneally with different dosages of VCD once every day from 6.5 to 18.5 days post-coitus (dpc). We showed that maternal exposure to VCD during pregnancy significantly reduced the litter size and ovarian reserve, while increasing microtia occurrences of F1 mice. The cytospread staining showed a significant inhibition of meiotic prophase I progression from the zygotene stage to the pachytene stage. Mechanistically, the expression level of DNA damage marker (γ-H2AX) and BAX/BCL2 ratios were significantly increased, and RAD51 and DMC1 were extensively recruited to DNA double strand breaks sites in the oocytes of offspring from VCD-exposed mothers. Overall, our results provide solid evidence showing that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on the offspring.


Assuntos
Infertilidade , Exposição Materna , Humanos , Gravidez , Feminino , Camundongos , Animais , Exposição Materna/efeitos adversos , Meiose , Oócitos , Cicloexenos/toxicidade , Compostos de Vinila/toxicidade
5.
Sci Adv ; 7(39): eabg9335, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559563

RESUMO

During the S phase of mitosis, Sororin is recruited by acetylated Smc3 and stabilizes sister chromatid cohesion by counteracting the Wapl-Pds5 interaction. Thereafter, Sororin is phosphorylated during prophase and translocated to the cytoplasm, where its function remains poorly understood. Here, we report that Sororin acts as a regulator of meiotic G2-M transition and spindle assembly in mammalian oocytes. Sororin is present in the nucleus of GV oocytes and becomes associated with the spindle apparatus during meiosis I in mice. Depletion of Sororin causes failure of GVBD due to inactivation of Cdk1 and defective spindle assembly because of reduced levels of Cyclin B2. We validate Sororin interactions with Cyclin B2 that protects it from destruction by APCCdh1, which drives M phase entry and bipolar spindle formation. Notably, the meiotic functions of Sororin are conserved among mammals. Together, our findings provide novel insights into the noncanonical role of Sororin in the resumption of meiosis and progression through meiosis I in mammalian oocytes.

6.
Pestic Biochem Physiol ; 175: 104851, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33993969

RESUMO

The insect voltage-gated sodium channel is the primary target of pyrethroids and novel efficient insecticides such as indoxacarb and metaflumizone. In this study, we cloned and characterized two putative sodium channel genes, TcNav1 and TcNav2, in Tribolium castaneum. The composite TcNav1 and TcNav2 encode a protein of 2045 and 2037 amino acid residues, sharing 76.1% and 75.5% amino acid identity with Drosophila para, respectively. Comparative analysis of genomic organization showed that TcNav1 and TcNav2 contain 26 and 27 exons, respectively. Analysis of the expression patterns showed that the mRNA levels of TcNav1 and TcNav2 were predominantly expressed in the head. RNAi-mediated knockdown of both TcNav1 and TcNav2 adversely affected adult emergence and significantly decreased sensitivity to deltamethrin. Significantly reduced pupation rate and sensitivity to beta-cypermethrin were observed after injection of siRNA targeting TcNav1 but not TcNav2. Taken together, we provide evidence that sodium channel gene has undergone duplication in T. castaneum, resulting in diversified developmental and toxicological functions.


Assuntos
Besouros , Tribolium , Animais , Besouros/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Interferência de RNA , RNA de Cadeia Dupla , RNA Interferente Pequeno , Tribolium/genética , Tribolium/metabolismo
7.
Reprod Biol Endocrinol ; 19(1): 57, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874950

RESUMO

BACKGROUND: In mitotic cells, WAPL acts as a cohesin release factor to remove cohesin complexes from chromosome arms during prophase to allow the accurate chromosome segregation in anaphase. However, we have recently documented that Wapl exerts a unique meiotic function in the spindle assembly checkpoint (SAC) control through maintaining Bub3 stability during mouse oocyte meiosis I. Whether this noncanonical function is conserved among species is still unknown. METHODS: We applied RNAi-based gene silencing approach to deplete WAPL in porcine oocytes, validating the conserved roles of WAPL in the regulation of SAC activity during mammalian oocyte maturation. We also employed immunostaining, immunoblotting and image quantification analyses to test the WAPL depletion on the meiotic progression, spindle assembly, chromosome alignment and dynamics of SAC protein in porcine oocytes. RESULTS: We showed that depletion of WAPL resulted in the accelerated meiotic progression by displaying the precocious polar body extrusion and compromised spindle assembly and chromosome alignment. Notably, we observed that the protein level of BUB3 was substantially reduced in WAPL-depleted oocytes, especially at kinetochores. CONCLUSIONS: Collectively, our data demonstrate that WAPL participates in the porcine oocyte meiotic progression through maintenance of BUB3 protein levels and SAC activity. This meiotic function of WAPL in oocytes is highly conserved between pigs and mice.


Assuntos
Meiose/genética , Proteínas Nucleares/fisiologia , Oócitos/fisiologia , Fuso Acromático/genética , Animais , Células Cultivadas , Segregação de Cromossomos/genética , Feminino , Deleção de Genes , Técnicas de Maturação in Vitro de Oócitos/veterinária , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Fuso Acromático/metabolismo , Suínos
8.
Front Cell Dev Biol ; 8: 582715, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134299

RESUMO

Microcystin-leucine arginine (MC-LR) is the most toxic cyanotoxin found in water bodies. Microcystins are produced as secondary products of cyanobacteria metabolism. They have a stable structure, and can bioaccumulate in living organisms. Humans and livestock who drink fresh water containing MC-LR can be poisoned. However, few studies have reported the effects of MC-LR exposure on livestock or human reproduction. In this study, we used porcine oocytes as a model to explore the effects of MC-LR on oocyte maturation, and studied the impact of vitamin C (VC) administration on MC-LR-induced meiosis defects. Exposure to MC-LR significantly restricted cumulus cell expansion and decreased first polar body extrusion. Further studies showed that MC-LR exposure led to meiosis arrest by disturbing cytoskeleton dynamics with MC-LR exposed oocytes displaying aberrant spindle organization, low levels of acetylate α-tubulin, and disturbed actin polymerization. Additionally, MC-LR exposure impaired cytoplasmic maturation by inducing mitochondria dysfunction. Moreover, MC-LR also produced abnormal epigenetic modifications, and induced high levels of oxidative stress, caused DNA damage and early apoptosis. The administration of VC provided partial protection from all of the defects observed in oocytes exposed to MC-LR. These results demonstrate that MC-LR has a toxic effect on oocyte meiosis through mitochondrial dysfunction-induced ROS, DNA damage and early apoptosis. Supplementation of VC is able to protect against MC-LR-induced oocyte damage and represents a potential therapeutic strategy to improve the quality of MC-LR-exposed oocytes.

9.
Reprod Toxicol ; 98: 200-208, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33010468

RESUMO

Juglone, a naphthoquinone isolated from many species of the Juglandaceae (walnut) family, has been used in traditional Chinese medicine for centuries for its various pharmacological effects. Our previous research found its toxic effects on oocytes maturation. But we still know a little about its toxic effects on embryo development. Here, we used mouse embryo as a model to explore the effects of juglone on early mammalian embryo development. Exposure to juglone significantly decreased the development rate in early mouse embryos in vitro. Moreover, juglone exposure led to developmental arrest by disturbing mitochondrial function, producing abnormal epigenetic modifications, inducing high levels of oxidative stress and DNA damage, and increasing the rate of embryonic cell apoptosis. However, vitamin C (VC) ameliorated the toxic effects of juglone to a certain extent. Overall, juglone has a toxic effect on early embryo development through the generation of ROS and apoptosis. But VC was able to protect against these juglone-induced defects. These results not only give a new perspective on juglone's pharmacological effects on early mammalian embryo development, but also provide ideas for the better application of this agent in traditional Chinese medicine.


Assuntos
Ácido Ascórbico/farmacologia , Embrião de Mamíferos/efeitos dos fármacos , Naftoquinonas/toxicidade , Substâncias Protetoras/farmacologia , Vitaminas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Dano ao DNA , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos ICR , Espécies Reativas de Oxigênio/metabolismo
10.
Sci Adv ; 6(15): eaax3969, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32284991

RESUMO

During mitotic prophase, cohesins are removed from chromosome arms by Wapl to ensure faithful sister chromatid separation. However, during female meiosis I, the resolution of chiasmata requires the proteolytic cleavage of cohesin subunit Rec8 along chromosome arms by Separase to separate homologs, and thus the role of Wapl remained unknown. Here, we report that Wapl functions as a regulator of spindle assembly checkpoint (SAC) to prevent aneuploidy in meiosis I. Depletion of Wapl accelerates meiotic progression, inactivates SAC, and causes meiotic defects such as aberrant spindle/chromosome structure and incorrect kinetochore-microtubule (K-MT) attachment, consequently leading to aneuploid eggs. Notably, we identify Bub3 as a binding partner of Wapl by immunoprecipitation and mass spectrometry analysis. We further determine that Wapl controls the SAC activity by maintaining Bub3 protein level and document that exogenous Bub3 restores the normal meiosis in Wapl-depleted oocytes. Together, our findings uncover unique, noncanonical roles for Wapl in mediating control of the SAC in female meiosis I.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas/metabolismo , Aneuploidia , Animais , Pareamento Cromossômico , Feminino , Camundongos , Modelos Biológicos , Oócitos/metabolismo
11.
J Anim Sci Biotechnol ; 11: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292585

RESUMO

BACKGROUND: CK2 (casein kinase 2) is a serine/threonine-selective protein kinase that has been involved in a variety of cellular processes such as DNA repair, cell cycle control and circadian rhythm regulation. However, its functional roles in oocyte meiosis have not been fully determined. RESULTS: We report that CK2 is essential for porcine oocyte meiotic maturation by regulating spindle assembly checkpoint (SAC). Immunostaining and immunoblotting analysis showed that CK2 was constantly expressed and located on the chromosomes during the entire oocyte meiotic maturation. Inhibition of CK2 activity by its selective inhibitor CX-4945 impaired the first polar body extrusion and arrested oocytes at M I stage, accompanied by the presence of BubR1 at kinetochores, indicative of activated SAC. In addition, we found that spindle/chromosome structure was disrupted in CK2-inhibited oocytes due to the weakened microtubule stability, which is a major cause resulting in the activation of SAC. Last, we found that the level DNA damage as assessed by γH2A.X staining was considerably elevated when CK2 was inhibited, suggesting that DNA damage might be another critical factor leading to the SAC activation and meiotic failure of oocytes. CONCLUSIONS: Our findings demonstrate that CK2 promotes the porcine oocyte maturation by ensuring normal spindle assembly and DNA damage repair.

12.
Environ Pollut ; 255(Pt 1): 113194, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31520902

RESUMO

Heavy metal cadmium (Cd) is a widespread environmental contaminant with a potential toxicity that might adversely influence the health of experimental animals and humans. It has been known that Cd might accumulate in vertebrates for many years and thus leads to the hepatic and renal toxicity. Additionally, Cd concentration in the ovary increases with age and is highly related to the reproductive hazard. However, the underlying mechanisms regarding how Cd affects the female reproductive system especially the oocyte quality have not yet fully defined. Here, we reported that Cd exposure led to the defective nuclear maturation of oocytes via the impairment of cytoskeleton assembly, displaying the aberrant spindle organization, chromosome alignment and actin polymerization. In the meantime, Cd exposure caused the impaired cytoplasmic maturation by showing the disrupted dynamics of mitochondrial integrity and cortical granules, and thereby resulting in the compromised sperm binding ability and fertilization capacity of oocytes. More importantly, we found that glutathione (GSH) supplementation was able to recover the meiotic failure induced by Cd exposure through suppressing the excessive ROS level, DNA damage accumulation and apoptotic incidence. Taken together, our findings demonstrate that Cd exposure has the adverse effects on the oocyte meiotic maturation as well as subsequent fertilization, and provide a potential effective strategy to improve the quality of Cd-exposed oocytes.


Assuntos
Cádmio/toxicidade , Mitocôndrias/patologia , Oócitos/citologia , Oogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Citoesqueleto/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Humanos , Masculino , Meiose/efeitos dos fármacos , Oócitos/patologia , Suínos
13.
Mol Hum Reprod ; 25(10): 601-613, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31393565

RESUMO

CBP (carboplatin) is a second-generation chemotherapeutic drug of platinum compound commonly applied in the treatment of sarcomas and germ cell tumours. Although it is developed to replace cisplatin, which has been proven to have a variety of side effects during cancer treatment, CBP still exhibits a certain degree of toxicity including neurotoxicity, nephrotoxicity, hematotoxicity and myelosuppression. However, the underlying mechanisms regarding how CBP influences the female reproductive system especially oocyte quality have not yet been fully determined. Here, we report that CBP exposure led to the oocyte meiotic defects by impairing the dynamics of the meiotic apparatus, leading to a remarkably aberrant spindle organisation, actin polymerisation and mitochondrial integrity. Additionally, CBP exposure caused compromised sperm binding and fertilisation potential of oocytes by due to an abnormal distribution of cortical granules and its component ovastacin. More importantly, we demonstrated that vitamin C supplementation prevented meiotic failure induced by CBP exposure and inhibited the increase in ROS levels, DNA damage accumulation and apoptotic incidence. Taken together, our findings demonstrate the toxic effects of CBP exposure on oocyte development and provide a potential effective way to improve the quality of CBP-exposed oocytes in vitro.


Assuntos
Ácido Ascórbico/farmacologia , Carboplatina/efeitos adversos , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Células Cultivadas , Citoproteção/efeitos dos fármacos , Feminino , Fertilização/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oócitos/citologia , Oócitos/fisiologia , Oogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Suínos
14.
Aging (Albany NY) ; 11(13): 4706-4719, 2019 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-31301169

RESUMO

DDP (cisplatin), a DNA cross-linking agent, is one of the most common chemotherapeutic drugs that have been widely used in the treatment of sarcomas and germ cell tumors. DDP treatment exhibits severe side effects including renal toxicity, ototoxicity and embryo-toxicity. Women of reproductive age treated with DDP may lead to loss of primordial follicles, resulting in the depletion of the ovarian reserve and consequent premature ovarian failure. However, the influence of DDP on the oocyte quality and the strategy to prevent it has not yet fully clarified. Here, we report that DDP exposure resulted in the oocyte meiotic failure via disrupting the meiotic organelle dynamics and arrangement, exhibiting a prominently impaired cytoskeleton assembly, including spindle formation and actin polymerization. In addition, exposure to DDP led to the abnormal distribution of mitochondrion and cortical granules, two indicators of cytoplasmic maturation of oocytes. Conversely, TP (tea polyphenols) supplementation partially restored all of the meiotic defects resulted from DDP exposure through suppressing the increase of ROS level and the occurrence of DNA damage as well as apoptosis.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Oócitos/efeitos dos fármacos , Polifenóis/farmacologia , Chá/química , Animais , Apoptose/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Meiose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Suínos
15.
Nucleic Acids Res ; 46(5): 2335-2346, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29361031

RESUMO

Esco1 has been reported to function as a cohesion establishment factor that mediates chromosome cohesion and segregation in mitotic cells. However, its exact roles in meiosis have not been clearly defined. Here, we document that Esco1 is expressed and localized to both the nucleus and cytoplasm during mouse oocyte meiotic maturation. Depletion of Esco1 by siRNA microinjection causes the meiotic progression arrest with a severe spindle abnormality and chromosome misalignment, which is coupled with a higher incidence of the erroneous kinetochore-microtubule attachments and activation of spindle assembly checkpoint. In addition, depletion of Esco1 leads to the impaired microtubule stability shown by the weakened resistance ability to the microtubule depolymerizing drug nocodazole and the decreased level of acetylated α-tubulin. Conversely, overexpression of Esco1 causes hyperacetylation of α-tubulin and spindle defects. Moreover, we find that Esco1 binds to α-tubulin and is required for its acetylation. The reduced acetylation level of α-tubulin in Esco1-depleted oocytes can be restored by the ectopic expression of exogenous wild-type Esco1 but not enzymatically dead Esco1-G768D. Purified wild-type Esco1 instead of mutant Esco1-G768D acetylates the synthesized peptide of α-tubulin in vitro. Collectively, our data assign a novel function to Esco1 as a microtubule regulator during oocyte meiotic maturation beyond its conventional role in chromosome cohesion.


Assuntos
Acetiltransferases/metabolismo , Meiose , Oócitos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Acetiltransferases/fisiologia , Animais , Cromossomos de Mamíferos , Citoplasma/metabolismo , Feminino , Cinetocoros/metabolismo , Lisina/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Meiose/genética , Camundongos Endogâmicos ICR , Microtúbulos/metabolismo , Oócitos/enzimologia , Tubulina (Proteína)/química
16.
FASEB J ; 32(3): 1328-1337, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29109171

RESUMO

Negative effects of postovulatory aging on fertilization ability and subsequent embryo development have been reported in rodents; however, the molecular and cellular changes during this process have not been fully defined. Here, we used porcine oocytes, a model that is physiologically and developmentally similar to humans, to explore the molecular mechanisms that underlie how postovulatory aging affects oocyte quality and fertilization capacity. We found that postovulatory aging caused the morphologic change of porcine oocytes by exhibiting the incompact expansion of cumulus cells and an increased occurrence of fragmentation. Aging also impaired oocyte quality by disrupting organelle structures, including the spindle assembly, actin polymerization, and mitochondrial integrity. Moreover, postovulatory aging led to the abnormal distribution of cortical granules and ovastacin, which, in turn, resulted in defective sperm binding and consequently compromised fertilization potential. Of note, we observed that postovulatory aging induced oxidative stress with a high level of reactive oxygen species and apoptotic rate in oocytes, thereby resulting in the deterioration of critical factors in the maintenance of oocyte quality and fertilization capacity. Taken together, our findings demonstrate that postovulatory aging perturbs a variety of molecular and cellular changes in porcine oocytes by inducing oxidative stress.-Miao, Y., Zhou, C., Cui, Z., Zhang, M., ShiYang, X., Lu, Y., Xiong, B. Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress.


Assuntos
Apoptose , Senescência Celular , Oócitos/patologia , Ovulação , Estresse Oxidativo , Espermatozoides/patologia , Animais , Células Cultivadas , Feminino , Masculino , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/metabolismo , Suínos
17.
Hum Reprod ; 33(1): 116-127, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29112712

RESUMO

STUDY QUESTION: Does melatonin restore the benzo(a)pyrene (BaP)-induced meiotic failure in porcine oocytes? SUMMARY ANSWER: Melatonin effectively inhibits the increased reactive oxygen species (ROS) level and apoptotic rate in BaP-exposed porcine oocytes to recover the meiotic failure. WHAT IS KNOWN ALREADY: BaP, a widespread environmental carcinogen found in particulate matter, 2.5 µm or less (PM2.5), has been shown to have toxicity at the level of the reproductive systems. BaP exposure disrupts the steroid balance, alters the expression of ovarian estrogen receptor and causes premature ovarian failure through the rapid depletion of the primordial follicle pool. In addition, acute exposure to BaP has transient adverse effects on the follicle growth, ovulation and formation of corpora lutea, which results in transient infertility. STUDY DESIGN, SIZE, DURATION: Porcine oocytes were randomly assigned to control, BaP-exposed and melatonin-supplemented groups. BaP was dissolved in dimethylsulphoxide and diluted to a final concentration of 50, 100 or 250 µM with maturation medium, respectively. Melatonin was dissolved in the absolute ethanol and diluted with maturation medium to a final concentration of 1 nM, 100 nM, 10 µM and 1 mM, respectively. The in vitro cultured oocytes from each group after treatment were applied to the subsequent analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS: Acquisition of oocyte meiotic competence was assessed using immunostaining, fluorescent intensity quantification and/or immunoblotting to analyse the cytoskeleton assembly, mitochondrial integrity, cortical granule dynamics, ovastacin distribution, ROS level and apoptotic rate. Fertilization ability of oocytes was examined by sperm binding assay and IVF. MAIN RESULTS AND THE ROLE OF CHANCE: BaP exposure resulted in the oocyte meiotic failure (P = 0.001) via impairing the meiotic apparatus, showing a prominently defective spindle assembly (P = 0.003), actin dynamics (P < 0.001) and mitochondrion integrity (P < 0.001). In addition, BaP exposure caused the abnormal distribution of cortical granules (P < 0.001) and ovastacin (P = 0.003), which were consistent with the observation that fewer sperm bound to the zona pellucida surrounding the unfertilized BaP-exposed eggs (P < 0.001), contributing to the fertilization failure (P < 0.001). Conversely, melatonin supplementation recovered, at least partially, all the meiotic defects caused by BaP exposure through inhibiting the rise in ROS level (P = 0.015) and apoptotic rate (P = 0.001). LIMITATIONS, REASONS FOR CAUTION: We investigated the negative impact of BaP on the oocyte meiotic maturation in vitro, but not in vivo. WIDER IMPLICATIONS OF THE FINDINGS: Our findings not only deeply clarify the potential mechanisms of BaP-induced oocyte meiotic failure, but also extend the understanding about how environmental pollutants influence the reproductive systems in humans. STUDY FUNDING/COMPETING INTERESTS: This study was supported by the National Natural Science Foundation of China (31571545) and the Natural Science Foundation of Jiangsu Province (BK20150677). The authors have no conflict of interest to disclose.


Assuntos
Benzo(a)pireno/toxicidade , Meiose/efeitos dos fármacos , Melatonina/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinógenos Ambientais/toxicidade , China , Feminino , Fertilização/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Mitocôndrias/efeitos dos fármacos , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Sus scrofa
18.
FASEB J ; 32(1): 342-352, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904021

RESUMO

Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant and carcinogen that is frequently found in particulate matter, with a diameter of ≤2.5 µm (PM2.5). It has been reported to interrupt the normal reproductive system, but the exact molecular basis has not been clearly defined. To understand the underlying mechanisms regarding how BaP exposure disrupts female fertility, we evaluated oocyte quality by assessing the critical regulators and events during oocyte meiotic maturation and fertilization. We found that BaP exposure compromised the mouse oocyte meiotic progression by disrupting normal spindle assembly, chromosome alignment, and kinetochore-microtubule attachment, consequently leading to the generation of aneuploid eggs. In addition, BaP administration significantly decreased the fertilization rate of mouse eggs by reducing the number of sperm binding to the zona pellucida, which was consistent with the premature cleavage of N terminus of zona pellucida sperm-binding protein 2 and precocious exocytosis of ovastacin. Furthermore, BaP exposure interfered with the gamete fusion process by perturbing the localization and protein level of Juno. Notably, we found that BaP exposure induced oxidative stress with an increased level of reactive oxygen species and apoptosis in oocytes and thereby led to the deterioration of critical regulators and events during oocyte meiotic progression and fertilization. Our data document that BaP exposure reduces female fertility via impairing oocyte maturation and fertilization ability induced by oxidative stress and early apoptosis in murine models.-Zhang, M., Miao, Y., Chen, Q., Cai, M., Dong, W., Dai, X., Lu, Y., Zhou, C., Cui, Z., Xiong, B. BaP exposure causes oocyte meiotic arrest and fertilization failure to weaken female fertility.


Assuntos
Benzo(a)pireno/toxicidade , Fertilização/efeitos dos fármacos , Infertilidade Feminina/induzido quimicamente , Oócitos/efeitos dos fármacos , Oócitos/patologia , Aneugênicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Feminino , Infertilidade Feminina/patologia , Cinetocoros/efeitos dos fármacos , Masculino , Meiose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Microtúbulos/efeitos dos fármacos , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Interações Espermatozoide-Óvulo/efeitos dos fármacos
19.
Cell Cycle ; 16(21): 2139-2145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933593

RESUMO

Cytoplasmic dynein is a family of cytoskeletal motor proteins that move towards the minus-end of the microtubules to perform functions in a variety of mitotic processes such as cargo transport, organelle positioning, chromosome movement and centrosome assembly. However, its specific roles during mammalian oocyte meiosis have not been fully defined. Herein, we investigated the critical events during porcine oocyte meiotic maturation after inhibition of dynein by Ciliobrevin D treatment. We found that oocyte meiotic progression was arrested when inhibited of dynein by showing the poor expansion of cumulus cells and decreased rate of polar body extrusion. Meanwhile, the spindle assembly and chromosome alignment were disrupted, accompanied by the reduced level of acetylated α-tubulin, indicative of weakened microtubule stability. Defective actin polymerization on the plasma membrane was also observed in dynein-inhibited oocytes. In addition, inhibition of dynein caused the abnormal distribution of cortical granules and precocious exocytosis of ovastacin, a cortical granule component, which predicts that ZP2, the sperm binding site in the zona pellucida, might be prematurely cleaved in the unfertilized dynein-inhibited oocytes, potentially leading to the fertilization failure. Collectively, our findings reveal that dynein plays a part in porcine oocyte meiotic progression by regulating the cytoskeleton dynamics including microtubule stability, spindle assembly, chromosome alignment and actin polymerization. We also find that dynein mediates the normal cortical granule distribution and exocytosis timing of ovastacin in unfertilized eggs which are the essential for the successful fertilization.


Assuntos
Citoesqueleto/metabolismo , Dineínas/metabolismo , Oócitos/metabolismo , Animais , Centrossomo/metabolismo , Cromossomos/metabolismo , Células do Cúmulo/metabolismo , Meiose/fisiologia , Oogênese/fisiologia , Suínos
20.
Nucleic Acids Res ; 45(16): 9388-9397, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934466

RESUMO

Sister chromatid cohesion, mediated by cohesin complex and established by the acetyltransferases Esco1 and Esco2, is essential for faithful chromosome segregation. Mutations in Esco2 cause Roberts syndrome, a developmental disease characterized by severe prenatal retardation as well as limb and facial abnormalities. However, its exact roles during oocyte meiosis have not clearly defined. Here, we report that Esco2 localizes to the chromosomes during oocyte meiotic maturation. Depletion of Esco2 by morpholino microinjection leads to the precocious polar body extrusion, the escape of metaphase I arrest induced by nocodazole treatment and the loss of BubR1 from kinetochores, indicative of inactivated SAC. Furthermore, depletion of Esco2 causes a severely impaired spindle assembly and chromosome alignment, accompanied by the remarkably elevated incidence of defective kinetochore-microtubule attachments which consequently lead to the generation of aneuploid eggs. Notably, we find that the involvement of Esco2 in SAC and kinetochore functions is mediated by its binding to histone H4 and acetylation of H4K16 both in vivo and in vitro. Thus, our data assign a novel meiotic function to Esco2 beyond its role in the cohesion establishment during mouse oocyte meiosis.


Assuntos
Acetiltransferases/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Meiose/genética , Oócitos/enzimologia , Acetilação , Acetiltransferases/fisiologia , Aneuploidia , Animais , Cromossomos de Mamíferos/enzimologia , Feminino , Histonas/química , Lisina/metabolismo , Camundongos Endogâmicos ICR , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...